Summarizing Documents by Measuring the Importance of a Subset of Vertices within a Graph

Shouyuan Chen
Dept. Computer Science and Technology,
Beijing 10084, China
chenshoyuan@gmail.com

Minlie Huang
Dept. Computer Science and Technology,

Abstract — This paper presents a novel method of generating extractive summaries for multiple documents. Given a cluster of documents, we firstly construct a graph where each vertex represents a sentence and edges are created according to the asymmetric relationship between sentences. Then we develop a method to measure the importance of a subset of vertices by adding a super-vertex into the original graph. The importance of such a super-vertex is quantified as super-centrality, a quantitative measure for the importance of a subset of vertices within the whole graph. Finally, we propose a heuristic algorithm to find the best summary. Our method is evaluated with extensive experiments. The comparative results show that the proposed method outperforms other methods on several datasets.

Keywords: document summarization, centrality, graph, diversity

I. INTRODUCTION

With the rapid growth of information on the Internet, people need to get a concise version of a large set of articles in a short time. As the most well-known event, NIST has organized the DUC competition on document summarization since 2000. This paper follows the line of extractive summarization whose task is to choose a set of sentences from the original documents.

A good summary is expected to preserve the topic information contained in the documents as much as possible, and at the same time to contain as little redundancy as possible, known as information richness and diversity, respectively. The requirement raises a fundamental problem: how important will a selected summary be to represent the whole documents? Despite a significant body of work in summarization, this issue has yet been systematically studied in the past. Existing systems such as MEAD [1], and many graph-based methods [2-5], proposed means of finding a set of sentences to form summaries, but none of them could answer the question.

Within the graph-based modeling framework, the previous problem can be transferred to that how important a subset of vertices will be to the whole graph? Centrality is a good metric to determine the relative importance of a vertex within a graph. The centrality of a vertex could answer some questions such as how important a person is within a social network. Or in summarization, it can answer how salient a sentence is for a document set. Although there have been various graph-based summarization methods, however, to the best of our knowledge, there is still no work that could measure the importance of a subset of vertices within a graph.

In this paper, we propose a novel method to the problem. Our method can measure the importance of a subset of vertices within a graph. The importance is quantified by the super-centrality of a super-vertex added into the original graph. The super-centrality measures how important a subset of vertices will be for the whole graph. Furthermore, the most important subset can be found with the aid of the heuristic algorithm as described in this paper. When our method is adapted to the summarization task, it is shown to achieve better results than those from comparable methods.

This paper is organized as follows: we survey related work in the next section; in Section III we introduce the method of measuring the importance of a subset of vertices. In Section IV, extensive experiments are described to justify our method. Finally we make our conclusion in Section V.

II. RELATED WORK

There are several well known centrality measures in graph theory, including degree centrality, betweenness, closeness, and eigenvector centrality [6-7]. The famous PageRank algorithm can be regarded as an application of eigenvector centrality. Our method can measure the importance of a subset of vertices, which will largely extend the use of centrality.

A key step of summarization using graph-based algorithms is to select the top ranking vertices. Most methods have to employ a redundancy removal module because they did not treat the selected vertices as a whole. The most well-known redundancy removal methods are maximum marginal relevance (MMR) [8], cross-sentence
informational subsumption [9], and diversity penalty. The central idea of these methods is to penalize redundancy by lowering a sentence’s rank if it is similar to sentences that are already selected. In [10], an absorbing random walk was proposed to improve diversity based on an initial ranking list. However, all these methods treat sentence ranking and diversity ranking separately, sometimes with heuristic procedures and parameters. Different from previous methods, we do not use any separate processes to remove redundancy. Instead, our method can exclude redundancy while identifying a subset of vertices for summarization.

III. MEASURING THE IMPORTANCE OF A SUBSET OF VERTICES WITHIN A GRAPH

A. Constructing of a graph

Given a set of sentences \(S = \{s_1, s_2, \ldots, s_d\} \), we construct a basic graph \(G_0(\mathcal{V}, \mathcal{E}) \) in two steps:

1. For each sentence \(s_i \), we create a vertex \(v_i \in V(G_0) \);
2. For each pair of vertices \(v_i \) and \(v_j \), we create a directed edge \((v_i, v_j) \in \mathcal{E}(G_0)\) from \(v_i \) to \(v_j \), and each edge is associated with an asymmetric weight as follows:

\[
w(v_i \rightarrow v_j) = \min\left(\frac{s_i \cdot s_j}{||s_i||}, 1\right)
\]

(1)

where \(s_i \) and \(s_j \) is a vector representation of \(v_i \) and \(v_j \), respectively. The weight can be viewed as the ratio of the information shared by \(v_i \) and \(v_j \) to the information contained in \(v_i \).

Random walk provides a theoretical framework of our proposed algorithm. Thus, it is proper to translate the basic graph \(G_0(\mathcal{V}, \mathcal{E}) \) to a stochastic graph \(G_1(\mathcal{V}, \mathcal{E}) \). In this paper, the transformation is a normalization of edge weights with an addictive Laplacian smooth that guarantees a well-formed (both irreducible and aperiodic) graph.

B. Computing the centrality for single vertices

The centrality of vertex \(u \) within graph \(G_1(\mathcal{V}, \mathcal{E}) \) can be computed as follows:

\[
\pi_u(G_i) = \sum_{x \in V(G_i)} p(u \mid x) \pi_x(G_i)
\]

(2)

where \(V_u(G_i) = \{x \mid x \in V(G_i), (x, u) \in \mathcal{E}(G_i)\} \), and all centralities sum up to 1.

\[
\sum_{x \in V(G_i)} \pi_x(G_i) = 1
\]

(3)

This recursive equation can be calculated via a power iteration method on graph \(G_i \). Notice that graph \(G_i \) is both irreducible and aperiodic. Hence, after applying the knowledge of random process on a graph, we have:

\[
\lim_{n \to \infty} p_{uv}^{(n)} = \pi_v(G_i)
\]

(4)

where \(p_{uv}^{(n)} \) represents the probability of traveling from any \(u \) to \(v \) in \(n \) steps.

C. Adding a super-vertex

Many tasks require selecting a subset of vertices within a graph. In summarization, we need to select several sentences to represent the whole document set. In a social network, we need to find a list of people that represent active groups. In addition to computing the centrality of a single vertex, it is a key issue to compute the centrality of a set of vertices in those tasks. In this regard, we propose to approach the problem by adding a super-vertex into the original graph.

Definition 1. (Super-vertex) Given a basic graph \(G_0(\mathcal{V}, \mathcal{E}) \) with a set of vertices \(V = \{v_1, v_2, \ldots, v_n\} \), we construct an extended graph \(G_{\varepsilon}(\mathcal{V}', \mathcal{E}) \) and its corresponding stochastic graph \(G_{\varepsilon}'(\mathcal{V}', \mathcal{E}') \), by adding a super-vertex \(C \) where \(\mathcal{V}' = \mathcal{V} \cup \{C\} \). The super-vertex \(C = \text{Subset}(V) \) consists of several vertices from \(V(G_0) \) and it has edges:

\[
\forall u \in V(G_0)
\]

\[
w(C \rightarrow u) = 1, \quad w(u \rightarrow C) = \max_{v \in \text{Subset}(V)} w(u \rightarrow v)
\]

(5)

The transition probability matrix of \(G_{\varepsilon}' \) can be computed with by normalization technique. We denote graph \(G_{\varepsilon}'(\mathcal{V}', \mathcal{E}') \) as \(G_{\varepsilon}(\mathcal{C}) \) with respect to the newly added super-vertex.

The super-vertex is a mixture of original vertices. Thus the information contained by a super-vertex can be viewed as a summation of the information contained by all the vertices represented by the super-vertex. On the other hand, the super-vertex has an edge connecting to any other vertex with a uniform weight of one. Ideally, the original graph and its centrality distribution should not be remarkably affected when a super-vertex is added.

It is worth noting that the \(\max(.) \) function inherently avoids redundancy when we select a subset of vertices to represent the whole graph. This will be discussed further in Section III-D.

At the end of this section, let us summarize some notations used so far:

1. \(G_0(\mathcal{V}, \mathcal{E}) \): the basic graph;
2. \(G_{\varepsilon}(\mathcal{V}, \mathcal{E}) \): the corresponding stochastic graph for \(G_0; \)
3. \(G_{\varepsilon}'(\mathcal{V}', \mathcal{E}') \) (\(G_{\varepsilon}(\mathcal{C}) \) for short): the extended graph of \(G_{\varepsilon}(\mathcal{V}, \mathcal{E}) \) with an added super-vertex \(C; \)
4. \(G_{\varepsilon}'(\mathcal{V}, \mathcal{E}') \) (\(G_{\varepsilon}(\mathcal{C}) \) for short): the corresponding stochastic graph for \(G_{\varepsilon}'(\mathcal{V}', \mathcal{E}'). \)

D. Measuring the importance of a subset of vertices by super-centrality

Given a super-vertex \(C = \text{Subset}(V) \) on graph \(G_{\varepsilon}' \), we use the following equation to compute its centrality:

\[
\pi_C(G_i) = \sum_{x \in C \cap V(G_i)} p(C \mid u; G_i) \pi_x(G_i)
\]

(6)

Note that \(\pi_C(G_i) \) is the probability of arriving at super-vertex \(C \) during a random walk on graph \(G_{\varepsilon}' \). This is the same meaning as the centrality of individual vertices. For
simplicity, we term the centrality of a super-vertex super-
centrality. The super-centrality measures how important a
super-vertex is for the graph, and it measures a subset of
vertices as a whole.

1) Exact Algorithm
The first approach to computing the super-centrality is an
exact algorithm, as used to computing the centrality of
single vertices. This approach simply adds the super-vertex,
then calculates the corresponding stationary distribution of
this super-vertex which is the super-centrality by power
iteration method.

An obvious optimization is to set the initial distribute as
the stationary distribution of the last computation of
the super-vertex. As the overall structure of the graph varies
slightly, the algorithm will converge in a few steps. The
algorithm is an exact algorithm meaning that it will compute
the precise centrality of the super-vertex C. However, the
time complexity is still high $O(n^2)$.

2) Approximation Algorithm
To be more efficient in computing the super-centrality,
an approximating algorithm with a much better time
complexity is developed. It is based on the assumption that
the addition of super-vertex C would only slightly change
the distribution of other vertices. And thus we do not need a
power iteration here, instead the super-centrality can be
calculated by a simple ratio: $\pi_c(G_i) = \frac{\pi_c^{(0)}(G_i)}{1 + \pi_c^{(0)}(G_i)}$.

This algorithm is very fast because there is no iteration
process with graph G_i. And its precision is high in practice,
see experiments in Section IV-B.

3) Heuristic algorithm
The approximation algorithm is still inefficient for large
scale corpus. Assuming that we have N vertices on a graph,
if we need to select k vertices to represent the original graph,
the worst algorithm has to try $\left(\begin{array}{c} n \\ k \end{array} \right)$ times. Obviously, there is
a combinatorial explosion. Thus, a more efficient algorithm is
desired.

In this paper, we propose a heuristic approach. The idea
behind is straightforward: for each step, we extract a vertex
that achieves the greatest increase of super-centrality $\pi_c(G_i)$; then append it into the summarization set S, until
the word limit is exceeded.

Our algorithm has inherently avoided redundancy when selecting a subset of representative vertices. In each step of
iteration, we select the vertex that can maximize $\Delta \pi_c(G_i)$.
If a new sentence s_i is redundant to one item of the current
set $S = \{s_1, s_2, ..., s_j\}$, the two weights $\omega(v \rightarrow s_i)$ and
$\omega(v \rightarrow S) = \max_{x \in S} \{\omega(v \rightarrow x)\}$ will be almost the same (see
the definition of edge weight in formula (1)). Thus such an
s_i has no contribution to function $\Delta \pi_c(s_i)$ and it is not
likely to be selected. This is why we use the $\max(.)$ function
in formula (2). This is also the reason that our method can
inherently avoid redundancy (or improve diversity) to select
a subset of vertices to represent the whole graph.

IV. EXPERIMENTAL RESULTS

A. Data preparation and evaluation metric
The official datasets from DUC 2006 and TAC 2008 were used in our experiments. The task of DUC 2006
required participants generate a 250-word summary for each
topic, while TAC 2008 demanded for a short 100-word
summary.

We evaluated our method by comparing the generated
summaries to the hand-written reference summaries under
the ROUGE-1 measure [11]. ROUGE measures the quality
of a summary by counting the overlapping units such as the
n-gram, word sequences and word pairs between the
generated summary and the reference summary. We use
ROUGE-1 as the evaluation metric.

B. Comparing the exact and approximating algorithms of
computing super-centrality
In this experiment, we will prove that our approximating
algorithm of computing super-centrality is a good
approximation of the exact algorithm. The experiment is
conducted to calculate the relative error between the exact
algorithm and approximate version on 50 random selected
topics.

Experiments show that the average relative error of
approximation algorithm is no more than 0.1% against the
exact one. Thus, the approximating algorithm seems to be
practically useful because of its precision to the exact
algorithm and computational efficiency. As a result, we
used the approximating algorithm hereafter to compute the
super-centrality of a super-vertex hereafter.

C. In comparison to the state-of-the-art methods
We compare our method with several state-of-the-art
methods. We implemented two graph based summarization
algorithms:

1) LexRank [3]. It aims to extract salient sentences. This
algorithm is based on the eigenvector centrality. We
select the top sentences within the length limit as the
final summaries.

2) GRASSHOPPER [10]. This algorithm is to tune the
extracted vertices to be absorbing state in a random
walk.

The implement algorithms, including ours, LexRank and
GRASSHOPPER are built on same graph structures, in
which edge weights are computed by LSI with parameter k
= 200 [12]. The difference only exists in computing the
centralities and in the process of selecting the final
sentences.

Figure 1 show that our method achieved the highest
ROUGE-1 Recall scores among all the tested systems
(Precision and F-Score has a similar rank). Note that we did
not enable the redundancy removal module for the LexRank algorithm in these experiments. Instead, we demonstrate this separately in the subsequent section.

We also compared our results with those submitted to DUC 2006 and TAC 2008, respectively. Our system ranked 7th place among 71 submits of TAC2008 and 6th among 35 submits of DUC2006. Further, our results are comparable to those of other best systems.

D. Avoiding redundancy

An innovative aspect of our algorithm lies in its ability to remove redundancy while selecting representative sentences. Thus in this part, we justify this innovation by comparing our method with the most common MMR method (other diversity penalty procedures have almost the same processes) for redundancy removal.

MMR was employed in this experiment as a post-processing system for the LexRank approach. The penalty factor λ was tuned with a step of 0.1. From Figure 2, we can see that (1) our method outperformed the LexRank method with a MMR module; (2) the performance of the MMR algorithm depended heavily on the penalty factor; and (3) the best factor relied largely on the dataset used (0.9 for the TAC 2008 dataset while 0.8 for the DUC 2006 dataset); Thus the best factor selected for one dataset might not be optimal for another one.

V. Conclusion and future work

This paper presents a novel method of summarizing multi-documents by measuring the importance of a subset of vertices within a graph. After introducing a super-vertex into the graph, an exact and approximating algorithm is exploited to compute the importance of a super-vertex. The most important super-vertex can be found with the aid of a heuristic algorithm. The method is justified by experimental results on the DUC 2006 dataset and TAC 2008 dataset when compared with other state-of-the-art approaches.

Our future work is to apply the method to other problems such as finding representative persons in a social network.

Acknowledgements

The work is supported in part by NSFC project No. 60803075, Chinese 973 Project No. 2007CB311003. ZL is supported by the Intramural Program of the National Institutes of Health. We also want to thank Prof. Xiaoyan Zhu for her kind support.

Reference